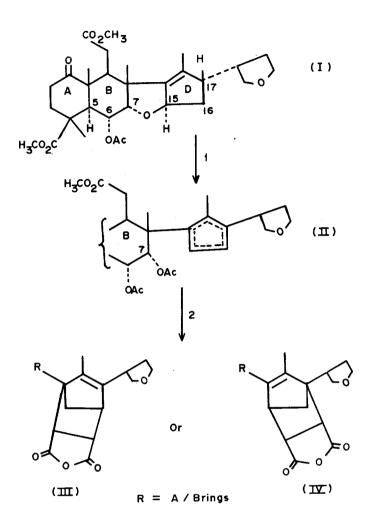
RING D IN NIMBIN^{* +} C.R. Narayanan and R.V. Pachapurkar National Chemical Laboratory, Poona


(Received 6 October 1965)

Elucidation of the size and attachment of ring D in nimbin was the more difficult part in its structure determination¹, and for which more evidence was still desirable. We had indicated a-configuration for the furan sidechain at C_{17} on biogenetic analogy, and β -configuration for the C_{15} -H since a potential all cis fusion of the five membered rings was considered more natural. Now we have obtained clearer evidence to show that ring D is five membered. Evidence is also obtained for the a-configuration of the furan sidechain, but our results now show that the C_{15} -H is a-oriented.

Hexahydronimbin¹ (I), on cautious treatment with BF_3 -etherate and acetic anhydride gave a diene, m.p. 188° , λ_{max} 251 mµ, ε , 4400 (unsubstituted cyclopentadiene², λ_{max} 239 mµ, ε , 3400), which correctly analysed³ for $C_{28}H_{38}o_6(OAc)_2$. The variation of its m.p. from $185-202^\circ$ and $(a)_D$ +34 to +39° (chf) and UV maximum at about 250 mµ from ε , 4000 to 5000, and the variations in its PMR spectrum in different preparations and even on recrystallization showed that the cyclopentadiene derivative (II) is a mixture of double bond isomers. The characteristic J values of about 3 and 12 cps for the C_6 -H at T 4.93 in the PMR spectrum and the presence of the R-band of the C_1 -ketone at λ_{max} 292 mµ in the UV spectrum of the compound showed

^{*}Communication No.839 , National Chemical Lab., Poona. ^{*}Presented at the International Symposium on Terpenoids at the National Chemical Laboratory, Poona, June 6-9, 1965.

4333

1 BF3 - Ac20

2 Maleic anhydride

that the A/B rings are intact. The diene readily formed an adduct with maleic anhydride, m.p. $221-23^{\circ}$, $(a)_{D}+25^{\circ}$ (chf). Its UV spectrum showed only end absorption and the R-band of the C_1 -ketone at λ_{max} 290 mµ. Its PMR spectrum showed methyl signals at γ 8.74, 8.68, 8.65 (C_8 , C_{10} and C_4 methyls) 8.15 (C_{13} -vinyl methyl), 7.95, 7.86 (C_6 -, C_7 -a-acetate methyls), 6.3 (6H, the two carbomethoxy groups) and signals for the C_7 -H at γ 5.02 ($J \sim 3$ cps), C_6 -H at γ 4.73 ($J \sim 3$ and 12 cps) and no signal for any vinyl proton. These, and its IR spectrum are consistent with structure (III) or (IV) for the adduct.

C15, C17. The protons at these positions can exist in four different combinations viz. two cis forms with either a-H or β -H at both C_{15} and C_{17} and two trans forms, C_{15} a-H, $C_{17}\beta$ -H or $C_{15}\beta$ -H, C_{17} a-H. The C_{15} -H, as has been indicated before¹, is coupled with the vicinal C₁₆-CH₂ to a triplet $(J \sim 7 \text{ cps})$ which is broadened by biallylic $coupling^{4,5}$ with the C_{13} -methyl and the C_{17} -H. Decoupling experiments on pyronimbic acid mesylate m.p. 200° (chars), $(a)_n$ +180° (prepared by mesylating pyronimbic acid¹), on a 100 Mc/s NMR Spectrometer show that the $C_{1,7}$ -H is coupled with the two protons at C_{16} with J \sim 7.5 and 1 cps. Models indicate that if the two protons at C_{15} and C_{17} are either a- or β -cis, the C₁₇-H would not make with either of the protons at C₁₆ any dihedral angle which would justify a coupling constant of 1 cps (angle, around 90°). The cis structures are therefore untenable. For the two possible trans-structures, the approximate dihedral angles measured on Dreiding models as well as the observed (by decoupling experiments) and calculated (according to the revised Karplus curve⁶) J values are given in Table I.

		J calc.	J obs.
<u>15a-H/176-H</u>			
¥ 15a/16a	18 ⁰	~ 9	~ 7
15a/16β	138 ⁰	~9	~ 7
$17\beta/16a$	192 ⁰	~1	~1
17β/16β	18 ⁰	~ 9	~7.5
158-H/17a-H			
¥ 15β/16a	150 ⁰	∽12	~7
156/168	30 ⁰	~ 7	∽7
17a/16a	18 ⁰	~ 9	~7.5
$17a/16\beta$	102 ⁰	~1	~1

Comparing the two possibilities it is fairly obvious that the first one, viz $15a-H/17\beta-H$ represents the correct stereochemistry, since only under such conditions the C_{15} -H can give rise to a triplet. (Since the calculated J values are based⁶ on a cyclohexane system, smaller coupling constants have to be expected⁷ in our cyclopentene system due to large C-C-H angles).

<u>Acknowledgement</u> We are deeply indebted to Dr. U. Scheidegger, Varian AG, Swizerland, for the decoupling experiments and valuable discussions on them.

REFERENCES

- C.B.Narayanan, R.V.Pachapurkar, S.K.Pradhan, V.R.Shah and N.S.Narasimhan, <u>Indian J. Chem</u>. <u>2</u> 108 (1964).
- 2 E.A. Braude and W.F.Forbes, <u>J. Chem.Soc</u> 2212(1953).
- 3 All other new compounds gave correct analyses.
- 4 J.T. Pinhey and S.Sternhell, <u>Tetrahedron letters</u> <u>No.4</u>, 275 (1963).
- 5 C.R.Narayanan and N.K.Venkatasubramanian, <u>Indian J.</u> Chem. 2, 274 (1964).
- 6 K.L.Williamson and W.S.Johnson, <u>J. Amer.Chem. Soc.</u> <u>83</u>, 4623 (1961).
- 7 M. Karplus, <u>J. Amer. Chem. Soc</u>. <u>85</u>, 2870 (1963).